過去のお知らせ

展示会

Tokyo Big Sight2021.11.17-19 (JPN)

Scheduled to exhibit at "INCHEM TOKYO 2021" (Tokyo Big Sight)

Preferred Computational Chemistry (PFCC) will be exhibiting at "INCHEM TOKYO 2021", which will be held at Tokyo Big Sight from Wednesday, November 17th to Friday, November 19th, 2021.

Click here for more details.
https://www.jma.or.jp/INCHEM/

Visitor registration URL
https://www.jma-onlineservice.com/11all/jp_inchem/registration.php?exhibitor=EX000490

*Please access the URL and register to attend.

PFCC Exhibition Booth Information

periodWednesday, November 17, 2021 - Friday, November 19, 2021
Exhibition AreaBooth No. S3-D02
Exhibition contentsIntroduction of the versatile atomic level simulator Matlantis

In addition, on the first day of the event (November 17th), PFCC will hold a lecture titled "Introducing Matlantis, which contributes to DX in the materials industry." Free advance registration is required to attend the lecture. Please register here.

https://www.jma.or.jp/inchem/exhibit/seminar.php

Details of the talk

Lecture nameIntroducing "Matlantis" that contributes to DX in the materials industry
Date and TimeWednesday, November 17, 2021 14:30-15:00
SpeakersPFCC
VenueTokyo Big Sight Exhibitor Seminar Venue
Overview of the Webinar"Matlantis" is a general-purpose atomic-level simulator developed based on PFN's deep learning technology and vast computing resources. In this seminar, we will introduce an overview of Matlantis and examples of its use in DX in materials development.

新着イベント・セミナー

NEW

開催予定

展示会

東京ビックサイト2025.12.17 - 19 (JPN)

【出展のお知らせ】Matlantis、SEMICON Japan 2025 に共同出展します

NEW

過去のお知らせ

ウェビナー

オンライン2025.12.12 (JPN)

プロセスインフォマティクスセミナーに登壇|汎用機械学習ポテンシャルで刷新する材料開発

NEW

過去のお知らせ

学会・講演会

Pacifico Yokohama・ JPN2025.12.8 - 13

Matlantis will be speaking at MRM2025 @ Pacifico Yokohama

NEW

過去のお知らせ

学会・講演会

Hynes Convention Center2025.11.30-12.5 (USA)

2025 MRS Fall Meeting & Exhibit発表および出展のお知らせ

過去のお知らせ

ウェビナー

Online (Zoom)2025.12.9

[Webinar] Matlantis: Universal Atomistic Simulation for AI-Driven Materials Discovery