HomeCasesシリコン酸化膜表面を模した系でのTMAの反応解析

シリコン酸化膜表面を模した系でのTMAの反応解析

東京エレクトロン株式会社

image

テーマ概要

半導体やシリカゲル表面への有機金属化合物の吸着は、成膜や有機触媒合成に関わる一連の反応において重要なステップとなります[1,2]。

その反応機構に関する物理化学的な解析は、最適な原料分子の選択に役立てることができますが、結晶相に応じたさまざまな固体表面で反応機構を解析することは、計算資源的に現実的ではありませんでした。

image

計算モデルと計算方法

今回はオルトケイ酸(OSA)のシラノール基がトリメチルアルミニウム(TMA)に吸着してAl-O結合を形成し、メタンが脱離する反応を対象としました。

始状態(IS)ではOSAのシラノール基のプロトンの反対方向にTMAを配置し、終状態(FS)としては、Al-O結合を有する生成物と、シラノール基から脱離したプロトンが付加したメタンとしました。

これらの構造を用いてNEB計算を実施しました。

image

計算結果と展望

NEB計算により、DFT計算データと同様な精度で解離活性化エネルギーを得ることができました。

Replicaの9番目の構造が遷移状態(TS)と予想され、振動数および振動モードの計算からも、妥当な構造だと予想されました。また、IRC計算の結果からもISとFSの構造が妥当だと予想されました。

今回のNEB計算では全ての原子に働く力の最大値を0.01[eV/Å]、
ばね定数kは0.1として、PFPのD3補正(CRYSTAL_PLUS_D3, Ver.1.1.0)を用いてidppアプローチで計算しましたが、769回のiterationで21分7秒の計算時間で終了しました。

同様な計算を一般的な計算クラスターを用いてDFT法で計算した場合、 キュータイムも含めると数日から数週間の計算時間を要すると考えられます。複数の始状態・終状態の想定される系でのNEB計算によるスクリーニングをMatlantisで1日程度で完了できることは、シミュレーションによる課題解決を大きく早められる可能性を秘めています。

image

計算条件

image

参考文献

[1] Organometallics 2001, 20(16), 3519–3530 https://doi.org/10.1021/om0102596 [2] Macromol. Chem. Phys. 2000, 201, 1334-1344 https://onlinelibrary.wiley.com/doi/10.1002/1521-3935%2820000801%29201%3A12%3C1334%3A%3AAID-MACP1334%3E3.0.CO%3B2-%23 [3] J. Phys. Chem. C 2015, 119(32), 18380–18388 https://doi.org/10.1021/acs.jpcc.5b05261
お問い合わせ・ご相談はこちら
事例一覧へ
Features
Features

Matlantisの3つの特長

革新的なマテリアルの創出に貢献し、持続可能な世界を実現するために「Matlantis」は生まれました。

汎用性/ Versatile

汎用性 / Versatile イメージ
幅広い元素・構造に対応

現在96種の元素に対応しております。これは自然界に存在するすべての元素を含むため、ユーザーは元素種の制約をほとんど受けることがありません。これらの元素種について、未知の材料を含む分子や結晶など任意の原子の組み合わせに対してシミュレーションすることが可能です。

高速 / High Speed

高速 / High Speed イメージ
従来手法の10,000倍以上高速

DFT(Density Functional Theory:密度汎関数法)では、高性能なコンピュータを用いて数時間~数カ月かかった原子レベルの物理シミュレーションを、数秒単位で行うことができます。

使いやすさ / Easy to Use

使いやすさ / Easy to Use イメージ
ブラウザを立ち上げれば
シミュレーションを開始できます

学習済み深層学習モデル・物性計算ライブラリ・高性能な計算環境をパッケージにすることで、ハードウェアの準備や環境構築をすることなく、シミュレーションによる材料探索が可能です。また、従来の機械学習ポテンシャルとは異なり、ユーザーによるデータ収集や学習が不要です。

プロダクト詳細ページへ