動画配信

ウェビナー

オンライン2023.10.4 (JPN)

【オンデマンド版配信中】材料探索のための汎用ニューラルネットワークポテンシャルができるまで

2023年10月4日にMaterials Research Societyと共催で開催したウェビナー「History towards Universal Neural Network Potential for Material Discovery」のオンデマンド版が配信されました。
ぜひご視聴ください。

Abstract

The rapid advancements of Artificial Intelligence technology have brought about revolutionary changes in materials discovery.

Neural Network Potential (NNP) describes molecular dynamics force field using a neural network, and many physical properties can be simulated using this single neural network. The webinar reviews the history of NNP research to understand how dataset & neural network architecture are improved.

We also describe the effort to develop a universal neural network and introduce the “PreFerred Potential (PFP)” implemented in Matlantis.

Who should attend

  • Computational scientists who are facing limitations of their current calculation/simulation approach
  • Researchers who are interested in learning game-changing atomistic simulation method
  • Anyone who is interested in knowing about what’s happening at the forefront of materials informatics

Speakers

Kosuke Nakago

Preferred Networks, Inc.

Kosuke Nakago is an Engineer at Preferred Networks, Inc. He received his master degree in theoretical physics from the University of Tokyo in 2014. He worked on deep learning research & development at Preferred Networks, Inc. and developed chainer-chemistry, A Library for Deep Learning in Biology and Chemistry. He is also supporting users to utilize Matlantis for their innovative material discovery at Preferred Computational Chemistry, Inc. His research interest includes deep learning as well as its application to materials science. He also participates data science competition and he is Kaggle competition master and notebooks grandmaster.

Taku Watanabe

Preferred Computational Chemistry Inc.

Taku Watanabe, PhD. is a Lead Researcher at Preferred Computational Chemistry Inc. He earned his Ph.D. in Materials Science and Engineering from the University of Florida and did postdoctoral research in Chemical Engineering at Georgia Institute of Technology. In 2012, he joined Samsung R&D Institute Japan and dedicated his career for all-solid-state battery research for nearly eight years. His current research interest extends to battery materials, nanoporous solids, surface science, and the application of machine learning technology to computational chemistry in general.

新着イベント・セミナー

NEW

動画配信

ウェビナー

オンライン(Zoom)2025.3.26 (JPN)

【アーカイブ配信】材料開発における新規テーマ創出力強化戦略 -AI時代における魔の川の渡り方- イベントレポート

動画配信

ウェビナー

オンライン2025.5.20 (JPN)

【アーカイブ配信】奈良先端科学技術大学院大学 原嶋 庸介先生講演 イベントレポート

開催予定

ユーザーコミュニティ

東京コンファレンスセンター・品川2025.10.8 (JPN)

Matlantis User Conference 2025 開催決定のお知らせ 

過去のお知らせ

ウェビナー

オンライン2025.5.20 (JPN)

【PFCCウェビナー】奈良先端科学技術大学院大学 原嶋庸介先生ご登壇 ~ニューラルネットワークポテンシャルを活用した物質探索~

過去のお知らせ

学会・講演会

東京理科大学野田キャンパス&オンライン2025.3.14-17 (JPN)

第72回 応用物理学会春季学術講演会にて発表