Oxidative Dehydrogenation of Ethane Combined with CO₂ Splitting via Chemical Looping on In₂O₃ Modified with Ni–Cu Alloy

Kosuke Watanabe, Takuma Higo, Koki Saegusa, Sakura Matsumoto, Hiroshi Sampei, Yuki Isono, Akira Shimojuku, Hideki Furusawa and Yasushi Sekine

Modified In2O3 has the potential to be a better oxygen storage material due to its readily reducible surface and abundant bulk lattice oxygen released with a marked valence change from In3+ to In0. This work describes that In2O3 modified with a Ni–Cu alloy supports a chemical looping system consisting of oxidative dehydrogenation of ethane and CO2 splitting at the low temperature of 873 K with a large oxygen capacity (>4 wt %). This reaction system is achieved through dynamic changes between Ni–Cu binary alloy and Ni–Cu–In ternary alloy associated with the redox of indium species. Meticulous material screening, characterization, and theoretical calculations have revealed that the Ni–Cu alloy promotes the redox of In2O3 by activating ethane and by incorporating reduced indium species.

カテゴリ